

Sixth Semester B.E. Degree Examination, Dec.2014/Jan.2015 **Microelectronics Circuits**

Time: 3 hrs.

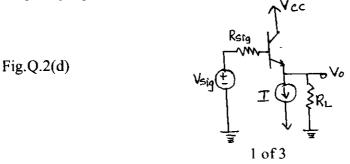
Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast THREE questions from Part-A and TWO from Part-B.

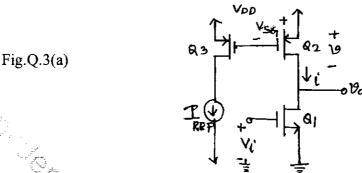
PART - A

Derive an expression for drain current of a MOSFET in different regions of operation. 1

Design a circuit of Fig.Q.1(b), so that the transistor operates at $I_D = 0.4$ mA and $V_D = +0.5$ V. The NMOS transistor has $V_t = 0.7V$, $\mu_n C_{ox} = 100 \mu A/V^2$, $L = 1 \mu m$, and $W = 32 \mu m$. Neglect channel length modulation effect ($\lambda = 0$).


- c. Draw the small signal circuit model of MOSFET when $|VSB| \neq 0$ and explain briefly. (ie including the body effect). (04 Marks)
- d. For the common drain amplifier stage, draw the small signal equivalent circuit and drive expressions for A_v, A_{vo}, G_v, R_{in} and R_{out}. (06 Marks)
- 2 Compare and explain the important characteristics of NMOS and NPN transistors.

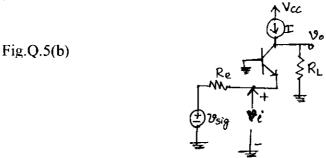
(05 Marks)


- With a neat circuit diagram and equations explain the basic BJT current steering circuits. (05 Marks)
- c. For the high frequency equivalent circuit of common source amplifier in Fig.Q.2(c), find the midband voltage gain $A_m = V_o/V_{sig}$ and upper 3dB frequency f_H using open circuit time constants.

Where $R_L^1 = 3.3 \text{K}\Omega$; $R_{sig} = 100 \text{K}\Omega$; $R_{in} = 420 \text{K}\Omega$; $C_{gs} = C_{gd} = 1P_f$, $g_m = 4m \text{ A/V}$.

d. For the emitter follower biased by a constant current source I, shown in Fig.Q.2(d), draw the (02 Marks) high frequency equivalent circuit clearly naming all the components:

3 a. A CMOS common source amplifier shown in Fig.Q.3(a) is fabricated with W/L = 100 μ m/1.6 μ m for all transistors. With Kn' = 90 μ A/V², Kp1' = 30 μ A/V², IREF = 100 μ A, V_{An} = 8 V/ μ m and V_{AP} = 12 V/ μ m, determine the following quantities g_{m1} , r_{o1} , r_{o2} , A_{vo}. (06 Marks)


- b. Draw the MOS cascade amplifier circuit with current source biasing. With the help of small signal equivalent circuit. Show that the cascading increases magnitude of open circuit voltage gain from A₀ to A₀². (06 Marks)
- c. Write short notes on cascade MOS current mirror circuit.

(04 Marks)

- d. Find A_o for an NMOS transistor fabricated in a 0.4 μ m CMOS process for which $Kn' = 200\mu A/V^2$, and $VA' = 20V/\mu m$. The transistor has a 0.4 μ m channel length and is operated with an overdrive voltage of 0.25V. What must be W for NMOS transistor to operate at $I_D = 100\mu A$? Also find f_o and g_m . (04 Marks)
- 4 a. Explain the operation of MOS differential pair with a differential input voltage and derive the range of differential input for differential mode of operation. (08 Marks)
 - b. Prove that $A_{CM} = \frac{-r_{o4}}{2R_{SS}} \times \frac{1}{1 + g_{m3} r_{o3}}$ for the active loaded MOS differential amplifier.

(08 Marks)

- c. For the BJT differential amplifier having $\beta = 100$, matched to 10% or better, and areas that are matched to 10% or better, along with collector resistors that are matched to 2% or better, find V_{OS} , I_B and I_{OS} . The dc bias current is $100\mu A$. (04 Marks)
- 5 a. Explain the operation of MOSFET as a linear amplifier. (05 Marks)
 - b. For the common base amplifier shown in Fig.Q.5(b) draw the small signal equivalent circuit and hence derive an expression for R_{in}, R_{out} and A_{vo}. (06 Marks)

- c. A MOS differential amplifier is operated at a total current of 0.8mA, using transistors with W/L ratios of 100, $K_{n'} = \mu_{n}$ $C_{ox} = 0.2$ mA/V², $V_{A} = 20V$ and $R_{D} = 5K\Omega$. Find $V_{OV} = (V_{GS} V_{t})$, g_{m} , r_{o} , A_{d} . (05 Marks)
- d. Explain channel length modulation effect of MOSFET.

(04 Marks)

PART - B

6 a. What are the four properties of negative feed back? Briefly explain about each property.

(08 Marks)

b. For the series-shunt feedback ideal amplifier find A_f, R_{if} and R_{of}.

(06 Marks)

- c. Discuss the method of frequency compensation for modifying open loop gain A(s) so that the closed loop amplifier is stable, by introducing a new pole in transfer function at sufficiently low frequency.

 (06 Marks)
- 7 a. Draw the circuit diagram of basic difference amplifier and derive an expression for the output voltage V_{out} and differential input resistance R_{id}. (05 Marks)
 - b. Show that the gain bandwidth product of an inverting amplifier is smaller than that of a non inverting amplifier. (05 Marks)
 - c. Find the output voltage of the circuit, assuming Op. Amp M1 has DC open loop gain of 1×10^5 and a bandwidth of 10 rad/sec., op amp M₂ is an ideal op, amp (Ref.Fig.Q.7(c)).

(06 Marks)

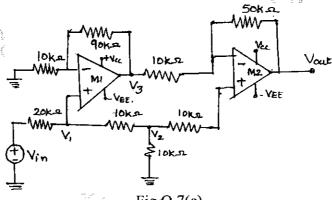


Fig.Q.7(c)

d. Write a note on use of op-amp in sample and hold circuit.

(04 Marks)

- 8 a. Draw the basic structure of CMOS inverter and explain the voltage transfer characteristic of CMOS inverter (08 Marks)
 - b. Consider a CMOS inverter fabricated in a 0.25 μ m process for which $C_{ox} = 6fF/\mu m^2$, $\mu_n C_{ox} = 115\mu A/V^2$, $\pi_p C_{ox} = 30\mu A/V^2$, $V_{tn} = -V_{tp} = 0.4V$ and $V_{DD} = 2.5V$. The W/L ratio of Q_N is 0.375 μ m/0.25 μ m and for Q_p is 1.125 μ m/0.25 μ m. The equivalent capacitance value is 6.25fF. Find t_{PHL} , t_{PLH} and t_p .
 - c. Explain with neat circuit diagrams about pull-up and pull-down networks used in CMOS logic circuits. (06 Marks)

* * * * *

